

Simulations of dark matter with frequent and rare self-interactions

Moritz S. Fischer (Hamburger Sternwarte - UHH)

Collaborators: Marcus Brüggen, Kai Schmidt-Hoberg, Klaus Dolag, Felix Kahlhoefer, Antonio Ragagnin, Andrew Robertson

Disputation - August 22, 2022

Evidence for Dark Matter

All evidence comes from astronomy:

- Galactic rotation curves
- Velocity dispersion
- Galaxy cluster masses
- Gravitational lensing
- Cosmic microwave background
- Large-scale structure

August 22, 2022 | Moritz S. Fischer

Large-Scale Structure

- Structure formation starts shortly after big bang from Gaussian random field
- Structure formation is strongly non-linear → simulations required
- ACDM simulations agree well with the observed large-scale structure

Credits: Springel et al. (2005)

Small-Scale Crisis of ACDM

There are several "problems" on small scales:

- Core-cusp problem
- Diversity problem
- Too many satellites problem
- Too-big-to-fail problem
- Plane-of-satellites problem

\rightarrow This is the small-scale crisis of ΛCDM

Core-Cusp Problem

- CDM predicts cuspy halos,
- but cored halos are observed.

How to Fix These Problems?

Solve or mitigate small scale problems:

- Alternative dark matter models (WDM, FDM, SIDM, ...)
- Alternative theory of gravity
- Baryons (Feedback from Stars, Supernovae, AGN)
- Improved modelling of the internal dynamics of observed galaxies

\rightarrow Solution is probably a combination

SIDM as a Potential Solution

 Self-Interacting Dark Matter (SIDM): Class of particle physics models that assume dark matter to be self-interacting.

- Self-interactions appear to be natural from particle physics.
- SIDM is promising, can solve or at least mitigate small-scale problems.

How Can We Model SIDM?

Gravothermal fluid model
Jeans approach
N-body simulations
computational expensive

Modelling Dark Matter Self-Interactions

- SIDM is neither collisonless (like CDM) nor fully collisonal (like a fluid)
- Requires 6D phase-space information
- We have to solve the collisional Vlasov-Poisson / Boltzmann equation:

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_x f - \nabla_x \Phi \cdot \nabla_v f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

Self-interactions are described by a collison term

The Collision Term

We distinguish two regimes:

Rare Self-Interacting Dark Matter (rSIDM)

- Interactions of numerical particles are treated as collisions of physical particles
- Probability that two particles interact:

$$P_{ij} = \frac{\sigma}{m_{\chi}} m \left| \Delta \vec{v}_{ij} \right| \Delta t \Lambda_{ij}$$

 \rightarrow Impracticable for frequent scattering, because $\Delta t \rightarrow 0$

Frequent Self-Interacting Dark Matter (fSIDM)

We need to reformulate the collision term:

- Interactions of numerical particles are NOT treated as collisions of physical particles
- Effective description (drag force) is used for the collision term
- If numerical particles are close, they interact (no probability)

Effective Description: Drag Force

Description of drag force from Kahlhoefer et al. 2014

Modelling fSIDM

Each particle pair is treated in two steps: 1. model $\delta v_{\parallel} \neq 0$: $\vec{p}_i^* = \vec{p}_i - \Delta \vec{p}_{drag}$, $\vec{p}_j^* = \vec{p}_j + \Delta \vec{p}_{drag}$ 2. model $\delta v_{\perp}^2 > 0$: $\vec{p}_i' = \vec{p}_i^* + \Delta \vec{p}_{rand}$, $\vec{p}_j' = \vec{p}_j^* - \Delta \vec{p}_{rand}$

To conserve energy and momentum, the particle pairs need to be executed in serial.

 \rightarrow parallelisation is more complicated than for SPH

We implemented our novel scheme in GADGET-3.

Angular Deflection Problem

August 22, 2022 | Moritz S. Fischer

17 / 34

Galaxy Cluster Merger

Credits: NASA, ESA, CXC, M. Bradac (University of California, Santa Barbara), and S. Allen (Stanford University)

Anisotropic Cross-Section

August 22, 2022 | Moritz S. Fischer

19 / 34

Simulation Setup

- Head-on mergers of galaxy clusters
- \blacksquare NFW halo, $\textit{M}_{\rm vir} = 10^{15}\,\rm M_{\odot}$
- equal and unequal-mass mergers
- GADGET-3 with own fSIDM and rSIDM implementation

Equal Mass Merger

Fischer et al. 2021a

BCG – Dark Matter Offsets

offsets are much larger for fSIDM than for rSIDM

Maximum Offset

Fischer et al. 2021a

Core Sloshing

There can exist separate galactic components at late times

Fischer et al. 2021b

Unequal-Mass Merger: Offsets

Fischer et al. 2021b

offsets are much larger for fSIDM than for rSIDM

Unequal-Mass Merger: Morphology

- physical density of subhalo in merger plane
- head on collision after second pericenter
- DM and Galaxy distribution differ significantly between the DM models

Cosmological Study

No differences on large scales

Cosmological Study: Power Spectrum

Difference only on small scales

August 22, 2022 | Moritz S. Fischer

Cosmological Study: Density Profile

Fischer et al. 2022

Constraints on Frequent Scattering

- The momentum transfer cross-section σ_{τ̃} can very roughly match rSIDM and fSIDM (density and shape profiles).
- Typically effects of fSIDM are stronger than for rSIDM (same $\sigma_{\tilde{T}}/m$).
- Thus rSIDM constraints can often be seen as a conservative limit for fSIDM.
- Sagunski et al. 2021: $\sigma_{\tilde{T}}/m \le 0.55 \,\mathrm{cm}^2 \mathrm{g}^{-1}$ (groups, CL 95%), $\sigma_{\tilde{T}}/m \le 0.175 \,\mathrm{cm}^2 \mathrm{g}^{-1}$ (clusters, CL 95%).

Cosmological Study: Satellite Abundance

Interestingly large suppression of satellites for fSIDM

Central Density vs. Number of Satellites

Fischer et al. 2022

Outlook

In future simulation we may include:

Baryons

■ ICM, ISM, star formation, supernovae, AGN, ...

Velocity-dependent cross-section

motivated by observations and particle physics

Take Home Messages

N-body simulations of fSIDM are ...

1. possible

- We developed a new numerical scheme,
- based on an effective description (drag force).

2. important

- fSIDM and rSIDM have different phenomenology (offsets, satellite abundance),
- significant difference also at small cross-sections ($\lesssim 1\,{\rm cm^2/g}$).